Mozart’s Brain and the Fighter Pilot

Most of us want to be smarter but have no idea how to go about improving our mental apparatus. We intuitively think that if we raised our IQ a few points that we'd be better off intellectually. This isn't necessarily the case. I know a lot of people with high IQs that make terribly stupid mistakes. The way around this is by improving not our IQ, but our overall cognition.

Cognition, argues Richard Restak, “refers to the ability of our brain to attend, identify, and act.” You can think of this as a melange of our moods, thoughts, decisions, inclinations and actions.

Included among the components of cognition are alertness, concentration, perceptual speed, learning, memory, problem solving, creativity, and mental endurance.

All of these components have two things in common. First, our efficacy at them depends on how well the brain is functioning relative to its capabilities. Second, this efficacy function can be improved with the right discipline and the right habits.

Restak convincingly argues that we can make our brains work better by “enhancing the components of cognition.” How we go about improving our brain performance, and thus cognition, is the subject of his book Mozart’s Brain and the Fighter Pilot.

Improving Our Cognitive Power

To improve the brain we need to exercise our cognitive powers. Most of us believe that physical exercise helps us feel better and live healthier; yet how many of us exercise our brain? As with our muscles and our bones, “the brain improves the more we challenge it.”

This is possible because the brain retains a high degree of plasticity; it changes in response to experience. If the experiences are rich and varied, the brain will develop a greater number of nerve cell connections. If the experiences are dull and infrequent, the connections will either never form or die off.

If we’re in stimulating and challenging environments, we increase the number of nerve cell connections. Our brain literally gets heavier, as the number of synapses (connections between neurons) increases. The key that many people miss here is “rich and varied.”

Memory is the most important cognitive function. Imagine if you lost your memory permanently: Would you still be you?

“We are,” Restak writes, “what we remember.” And poor memories are not limited to those who suffer from Alzheimer's disease. While some of us are genetically endowed with superlative memories, the rest of us need not fear.

Aristotle suggested that our mind was a wax tablet in a short book on memory, arguing that the passage of time fades the image unless we take steps to preserve it. He was right in ways he never knew; memory researchers know now that, like a wax tablet, our memory changes every time we access it, due to the plasticity Restak refers to. It can also be molded and improved, at least to a degree.

Long ago, the Greeks hit upon the same idea — mostly starting with Plato — that we don’t have to accept our natural memory. We can take steps to improve it.

Learning and Knowledge Acquisition

When we learn something new, we expand the complexity of our brain. We literally increase our brainpower.

[I]ncrease your memory and you increase your basic intelligence. … An increased memory leads to easier, quicker accessing of information, as well as greater opportunities for linkages and associations. And, basically, you are what you can remember.

Too many of us can’t remember these days, because we’ve outsourced our brain. One of the most common complaints at the neurologist's office for people over forty is poor memory. Luckily most of these people do not suffer from something neurological, but rather the cumulative effect of disuse — a graceful degradation of their memory.

Those who are not depressed (the commonest cause of subjective complaints of memory impairment) are simply experiencing the cumulative effect of decades of memory disuse. Part of this disuse is cultural. Most businesses and occupations seldom demand that their employees recite facts and figures purely from memory. In addition, in some quarters memory is even held in contempt. ‘He’s just parroting a lot of information he doesn’t really understand’ is a common put-down when people are enviously criticizing someone with a powerful memory. Of course, on some occasions, such criticisms are justified, particularly when brute recall occurs in the absence of understanding or context. But I’m not advocating brute recall. I’m suggesting that, starting now, you aim for a superpowered memory, a memory aimed at quicker, more accurate retrieval of information.

Prior to the printing press, we had to use our memories. Epics such as The Odyssey and The Iliad, were recited word-for-word. Today, however, we live in a different world, and we forget that these things were even possible. Information is everywhere. We need not remember anything thanks to technology. This helps and hinders the development of our memory.

[Y]ou should think of the technology of pens, paper, tape recorders, computers, and electronic diaries as an extension of the brain. Thanks to these aids, we can carry incredible amounts of information around with us. While this increase in readily available information is generally beneficial, there is also a downside. The storage and rapid retrieval of information from a computer also exerts a stunting effect on our brain’s memory capacities. But we can overcome this by working to improve our memory by aiming at the development and maintenance of a superpowered memory. In the process of improving our powers of recall, we will strengthen our brain circuits, starting at the hippocampus and extending to every other part of our brain.

Information is only as valuable as what it connects to. Echoing the latticework of mental models, Restek states:

Everything that we learn is stored in the brain within that vast, interlinking network. And everything within that network is potentially connected to everything else.

From this we can draw a reasonable conclusion: if you stop learning mental capacity declines.

That’s because of the weakening and eventual loss of brain networks. Such brain alterations don’t take place overnight, of course. But over a varying period of time, depending on your previous training and natural abilities, you’ll notice a gradual but steady decrease in your powers if you don’t nourish and enhance these networks.

The Better Network: Your Brain or the Internet

Networking is a fundamental operating principle of the human brain. All knowledge within the brain is based on networking. Thus, any one piece of information can be potentially linked with any other. Indeed, creativity can be thought of as the formation of novel and original linkages.

In his book, Weaving the Web: The Original Design and the Ultimate Destiny of the World Wide Web, Tim Berners-Lee, the creator of the Internet, distills the importance of the brain forming connections.

A piece of information is really defined only by what it’s related to, and how it’s related. There really is little else to meaning. The structure is everything. There are billions of neurons in our brains, but what are neurons? Just cells. The brain has no knowledge until connections are made between neurons. All that we know, all that we are, comes from the way our neurons are connected.

Cognitive researchers now accept that it may not be the size of the human brain which gives it such unique abilities — other animals have large brains as well. Rather its our structure; the way our neurons are structured, arranged, and linked.

The more you learn, the more you can link. The more you can link, the more you increase the brain's capacity. And the more you increase the capacity of your brain the better able you’ll be to solve problems and make decisions quickly and correctly. This is real brainpower.

Multidisciplinary Learning

Restak argues that a basic insight about knowledge and intelligence is: “The existence of certain patterns, which underlie the diversity of the world around us and include our own thoughts, feelings, and behaviors.”

Intelligence enhancement therefore involves creating as many neuronal linkages as possible. But in order to do this we have to extricate ourselves from the confining and limiting idea that knowledge can be broken down into separate “disciplines” that bear little relation to one another.

This brings the entire range of ideas into play, rather than just silos of knowledge from human-created specialities. Charlie Munger and Richard Feynman would probably agree that such over-specialization can be quite limiting. As the old proverb goes, the frog in the well knows nothing of the ocean.

Charles Cameron, a game theorist, adds to this conversation:

The entire range of ideas can legitimately be brought into play: and this means not only that ideas from different disciplines can be juxtaposed, but also that ideas expressed in ‘languages’ as diverse as music, painting, sculpture, dance, mathematics and philosophy can be juxtaposed, without first being ‘translated’ into a common language.

Mozart's Brain and the Fighter Pilot goes on to provide 28 suggestions and exercises for enhancing your brain's performance, a few of which we’ll cover in future posts.