Over 400,000 people visited Farnam Street last month to learn how to make better decisions, create new ideas, and avoid stupid errors. With more than 100,000 subscribers to our popular weekly digest, we've become an online intellectual hub. To learn more about we what do, start here.

Author Archives: Farnam Street Team

For the Bookworm on your List: 2016 Edition

Naughty or nice, at the beginning of December, we always post an assortment of book lists so you can pick something up to read over the holidays or find just the right book for the bookworm on your list. While some of our own favorites will come out over the next month or so, this will get you started on your holidays.

As a voracious reader you can check out a list of all the books I’ve read in 2016. If you’re still hungry for my recommendations see all the books I’ve read since 2014. The members of our learning community created a great list this summer and have been passing great recommendations on our slack channel. (Joining our learning community might be the best present you can give yourself.)

There are books that will improve your general knowledge of the world. If those are not for you, try these five noteable non-fiction books or books for doing new things. We has a curated list of timeless books published way back in the spring.

Here are some book recommendations from famous CEOs like Mark Zuckerburg, Don Graham, and Bill Gates. Amazon’s editors also selected their top 100 picks for the year. And the New York Times picked the 10 best books.

If that doesn’t satisfy your curiosity you can refer to our 2015, 2014, and 2013 recommendations.

Samuel Arbesman on Complex Adaptive Systems and the Difference between Biological and Physics Based Thinking

Samuel Arbesman (@arbesman) is a complexity scientist whose work focuses on the nature of scientific and technological change. Sam’s also written two books that I love, The Half-Life of Facts and Overcomplicated.

In this episode, Sam talks about:

  • Our relationship with technology
  • Whether art or science is more fundamental to humanity
  • How he defines success for himself
  • The difference between physics thinking and biological thinking
  • Why its better to learn things that change slowly
  • And much, much more!

******

Listen

***

Show Notes

A complete transcript is availale for members of the learning community.

Books mentioned:

The Knowledge Project: Morgan Housel on Reading, Writing, Filtering Information

On this episode, I’m happy to have Morgan Housel.

Morgan works at Collaborative Fund. He’s a former columnist at the Motley Fool, and a former columnist of the Wall Street Journal. His work has also been published in Time, USA Today, World Affairs, and Business Insider.
You name it, he’s been there. Simply put, he’s one of the shining lights of the business press.

More than that, though, he’s one of the few people that I read all the time. As I’ve gotten to know him over the years, I can also tell you he’s an exceptional person. I hope you enjoy this conversation as much as I did.

******

Listen

***

Morgan Housel on Reading, Writing, and Filtering Information Click To Tweet

Transcript:
A complete transcript is available for members.

Peter Bevelin on Seeking Wisdom, Mental Models, Learning, and a Lot More

One of the most impactful books we’ve ever come across is the wonderful Seeking Wisdom: From Darwin to Munger, written by the Swedish investor Peter Bevelin. In the spirit of multidisciplinary learning, Seeking Wisdom is a compendium of ideas from biology, psychology, statistics, physics, economics, and human behavior.

Mr. Bevelin is out with a new book full of wisdom from Warren Buffett & Charlie Munger: All I Want to Know is Where I’m Going to Die So I Never Go There. We were fortunate enough to have a chance to interview Peter recently, and the result is the wonderful discussion below.

***

What was the original impetus for writing these books?

The short answer: To improve my thinking. And when I started writing on what later became Seeking Wisdom I can express it even simpler: “I was dumb and wanted to be less dumb.” As Munger says: “It’s ignorance removal…It’s dishonorable to stay stupider than you have to be.” And I had done some stupid things and I had seen a lot of stupidity being done by people in life and in business.

A seed was first planted when I read Charlie Munger’s worldly wisdom speech and another one where he referred to Darwin as a great thinker. So I said to myself: I am 42 now. Why not take some time off business and spend a year learning, reflecting and write about the subject Munger introduced to me – human behavior and judgments.

None of my writings started out as a book project. I wrote my first book – Seeking Wisdom – as a memorandum for myself with the expectation that I could transfer some of its essentials to my children. I learn and write because I want to be a little wiser day by day. I don’t want to be a great-problem-solver. I want to avoid problems – prevent them from happening and doing right from the beginning. And I focus on consequential decisions. To paraphrase Buffett and Munger – decision-making is not about making brilliant decisions, but avoiding terrible ones. Mistakes and dumb decisions are a fact of life and I’m going to make more, but as long as I can avoid the big or “fatal” ones I’m fine.

So I started to read and write to learn what works and not and why. And I liked Munger’s “All I want to know is where I’m going to die so I’ll never go there” approach. And as he said, “You understand it better if you go at it the way we do, which is to identify the main stupidities that do bright people in and then organize your patterns for thinking and developments, so you don’t stumble into those stupidities.” Then I “only” had to a) understand the central “concept” and its derivatives and describe it in as simple way as possible for me and b) organize what I learnt in a way that was logical and useful for me.

And what better way was there to learn this from those who already knew this?

After I learnt some things about our brain, I understood that thinking doesn’t come naturally to us humans – most is just unconscious automatic reactions. Therefore I needed to set up the environment and design a system that helped me make it easier to know what to do and prevent and avoid harm. Things like simple rules of thumbs, tricks and filters. Of course, I could only do that if I first had the foundation. And as the years have passed, I’ve found that filters are a great way to save time and misery. As Buffett says, “I process information very quickly since I have filters in my mind.” And they have to be simple – as the proverb says, “Beware of the door that has too many keys.” The more complicated a process is, the less effective it is.

Why do I write? Because it helps me understand and learn better. And if I can’t write something down clearly, then I have not really understood it. As Buffett says, “I learn while I think when I write it out. Some of the things, I think I think, I find don’t make any sense when I start trying to write them down and explain them to people … And if it can’t stand applying pencil to paper, you’d better think it through some more.”

My own test is one that a physicist friend of mine told me many years ago, ‘You haven’t really understood an idea if you can’t in a simple way describe it to almost anyone.’ Luckily, I don’t have to understand zillion of things to function well.

And even if some of mine and others thoughts ended up as books, they are all living documents and new starting points for further, learning, un-learning and simplifying/clarifying. To quote Feynman, “A great deal of formulation work is done in writing the paper, organizational work, organization. I think of a better way, a better way, a better way of getting there, of proving it. I never do much — I mean, it’s just cleaner, cleaner and cleaner. It’s like polishing a rough-cut vase. The shape, you know what you want and you know what it is. It’s just polishing it. Get it shined, get it clean, and everything else.

Which book did you learn the most from the experience of writing/collecting?

Seeking Wisdom because I had to do a lot of research – reading, talking to people etc. Especially in the field of biology and brain science since I wanted to first understand what influences our behavior. I also spent some time at a Neurosciences Institute to get a better understanding of how our anatomy, physiology and biochemistry constrained our behavior.

And I had to work it out my own way and write it down in my own words so I really could understand it. It took a lot of time but it was a lot of fun to figure it out and I learnt much more and it stuck better than if I just had tried to memorize what somebody else had already written. I may not have gotten everything letter perfect but good enough to be useful for me.

As I said, the expectation wasn’t to create a book. In fact, that would have removed a lot of my motivation. I did it because I had an interest in becoming better. It goes back to the importance of intrinsic motivation. As I wrote in Seeking Wisdom: “If we reward people for doing what they like to do anyway, we sometimes turn what they enjoy doing into work. The reward changes their perception. Instead of doing something because they enjoy doing it, they now do it because they are being paid. The key is what a reward implies. A reward for our achievements makes us feel that we are good at something thereby increasing our motivation. But a reward that feels controlling and makes us feel that we are only doing it because we’re paid to do it, decreases the appeal.

It may sound like a cliché but the joy was in the journey – reading, learning and writing – not the destination – the finished book. Has the book made a difference for some people? Yes, I hope so but often people revert to their old behavior. Some of them are the same people who – to paraphrase something that is attributed to Churchill – occasionally should check their intentions and strategies against their results. But reality is what Munger once said, “Everyone’s experience is that you teach only what a reader almost knows, and that seldom.” But I am happy that my books had an impact and made a difference to a few people. That’s enough.

Why did the new book (All I Want To Know Is Where I’m Going To Die So I’ll Never Go There) have a vastly different format?

It was more fun to write about what works and not in a dialogue format. But also because vivid and hopefully entertaining “lessons” are easier to remember and recall. And you will find a lot of quotes in there that most people haven’t read before.

I wanted to write a book like this to reinforce a couple of concepts in my head. So even if some of the text sometimes comes out like advice to the reader, I always think about what the mathematician Gian-Carlo Rota once said, “The advice we give others is the advice that we ourselves need.”

How do you define Mental Models?

Some kind of representation that describes how reality is (as it is known today) – a principle, an idea, basic concepts, something that works or not – that I have in my head that helps me know what to do or not. Something that has stood the test of time.

For example some timeless truths are:

  • Reality is that complete competitors – same product/niche/territory – cannot coexist (Competitive exclusion principle). What works is going where there is no or very weak competition + differentiation/advantages that others can’t copy (assuming of course we have something that is needed/wanted now and in the future)
  • Reality is that we get what we reward for. What works is making sure we reward for what we want to achieve.

I favor underlying principles and notions that I can apply broadly to different and relevant situations. Since some models don’t resemble reality, the word “model” for me is more of an illustration/story of an underlying concept, trick, method, what works etc. that agrees with reality (as Munger once said, “Models which underlie reality”) and help me remember and more easily make associations.

But I don’t judge or care how others label it or do it – models, concepts, default positions … The important thing is that whatever we use, it reflects and agrees with reality and that it works for us to help us understand or explain a situation or know what to do or not do. Useful and good enough guide me. I am pretty pragmatic – whatever works is fine. I follow Deng Xiaoping, “I don’t care whether the cat is black or white as long as it catches mice.” As Feynman said, “What is the best method to obtain the solution to a problem? The answer is, any way that works.

I’ll tell you about a thing Feynman said on education which I remind myself of from time to time in order not to complicate things (from Richard P. Feynman, Michael A. Gottlieb, Ralph Leighton, Feynman’s Tips on Physics: A Problem-Solving Supplement to the Feynman Lectures on Physics):

“There’s a round table on three legs. Where should you lean on it, so the table will be the most unstable?”
The student’s solution was, “Probably on top of one of the legs, but let me see: I’ll calculate how much force will produce what lift, and so on, at different places.”
Then I said, “Never mind calculating. Can you imagine a real table?”
“But that’s not the way you’re supposed to do it!”
“Never mind how you’re supposed to do it; you’ve got a real table here with the various legs, you see? Now, where do you think you’d lean? What would happen if you pushed down directly over a leg?”
“Nothin’!”
I say, “That’s right; and what happens if you push down near the edge, halfway between two of the legs?”
“It flips over!”
I say, “OK! That’s better!”
The point is that the student had not realized that these were not just mathematical problems; they described a real table with legs. Actually, it wasn’t a real table, because it was perfectly circular, the legs were straight up and down, and so on. But it nearly described, roughly speaking, a real table, and from knowing what a real table does, you can get a very good idea of what this table does without having to calculate anything – you know darn well where you have to lean to make the table flip over. So, how to explain that, I don’t know! But once you get the idea that the problems are not mathematical problems but physical problems, it helps a lot.
Anyway, that’s just two ways of solving this problem. There’s no unique way of doing any specific problem. By greater and greater ingenuity, you can find ways that require less and less work, but that takes experience.

Which mental models “carry the most freight?” (Related follow up: Which concepts from Buffett/Munger/Mental Models do you find yourself referring to or appreciating most frequently?)

Ideas from biology and psychology since many stupidities are caused by not understanding human nature (and you get illustrations of this nearly every day). And most of our tendencies were already known by the classic writers (Publilius Syrus, Seneca, Aesop, Cicero etc.)

Others that I find very useful both in business and private is the ideas of Quantification (without the fancy math), Margin of safety, Backups, Trust, Constraints/Weakest link, Good or Bad Economics slash Competitive advantage, Opportunity cost, Scale effects. I also think Keynes idea of changing your mind when you get new facts or information is very useful.

But since reality isn’t divided into different categories but involves a lot of factors interacting, I need to synthesize many ideas and concepts.

Are there any areas of the mental models approach you feel are misunderstood or misapplied?

I don’t know about that but what I often see among many smart people agrees with Munger’s comment: “All this stuff is really quite obvious and yet most people don’t really know it in a way where they can use it.”

Anyway, I believe if you really understand an idea and what it means – not only memorizing it – you should be able to work out its different applications and functional equivalents. Take a simple big idea – think on it – and after a while you see its wider applications. To use Feynman’s advice, “It is therefore of first-rate importance that you know how to “triangulate” – that is, to know how to figure something out from what you already know.” As a good friend says, “Learn the basic ideas, and the rest will fill itself in. Either you get it or you don’t.”

Most of us learn and memorize a specific concept or method etc. and learn about its application in one situation. But when the circumstances change we don’t know what to do and we don’t see that the concept may have a wider application and can be used in many situations.

Take for example one big and useful idea – Scale effects. That the scale of size, time and outcomes changes things – characteristics, proportions, effects, behavior…and what is good or not must be tied to scale. This is a very fundamental idea from math. Munger described some of this idea’s usefulness in his worldly wisdom speech. One effect from this idea I often see people miss and I believe is important is group size and behavior. That trust, feeling of affection and altruistic actions breaks down as group size increases, which of course is important to know in business settings. I wrote about this in Seeking Wisdom (you can read more if you type in Dunbar Number on Google search). I know of some businesses that understand the importance of this and split up companies into smaller ones when they get too big (one example is Semco).

Another general idea is “Gresham’s Law” that can be generalized to any process or system where the bad drives out the good. Like natural selection or “We get what we select for” (and as Garrett Hardin writes, “The more general principle is: We get whatever we reward for).

While we are on the subject of mental models etc., let me bring up another thing that distinguishes the great thinkers from us ordinary mortals. Their ability to quickly assess and see the essence of a situation – the critical things that really matter and what can be ignored. They have a clear notion of what they want to achieve or avoid and then they have this ability to zoom in on the key factor(s) involved.

One reason to why they can do that is because they have a large repertoire of stored personal and vicarious experiences and concepts in their heads. They are masters at pattern recognition and connection. Some call it intuition but as Herbert Simon once said, “The situation has provided a cue; this cue has given the expert access to information stored in memory, and the information provides the answer. Intuition is nothing more and nothing less than recognition.

It is about making associations. For example, roughly like this:
Situation X Association (what does this remind me of?) to experience, concept, metaphor, analogy, trick, filter… (Assuming of course we are able to see the essence of the situation) What counts and what doesn’t? What works/not? What to do or what to explain?

Let’s take employing someone as an example (or looking at a business proposal). This reminds me of one key factor – trustworthiness and Buffett’s story, “If you’re looking for a manager, find someone who is intelligent, energetic and has integrity. If he doesn’t have the last, make sure he lacks the first two.”

I believe Buffett and Munger excel at this – they have seen and experienced so much about what works and not in business and behavior.

Buffett referred to the issue of trust, chain letters and pattern recognition at the latest annual meeting:

You can get into a lot of trouble with management that lacks integrity… If you’ve got an intelligent, energetic guy or woman who is pursuing a course of action, which gets put on the front page it could make you very unhappy. You can get into a lot of trouble. ..We’ve seen patterns…Pattern recognition is very important in evaluating humans and businesses. Pattern recognition isn’t one hundred percent and none of the patterns exactly repeat themselves, but there are certain things in business and securities markets that we’ve seen over and over and frequently come to a bad end but frequently look extremely good in the short run. One which I talked about last year was the chain letter scheme. You’re going to see chain letters for the rest of your life. Nobody calls them chain letters because that’s a connotation that will scare you off but they’re disguised as chain letters and many of the schemes on Wall Street, which are designed to fool people, have that particular aspect to it…There were patterns at Valeant certainly…if you go and watch the Senate hearings, you will see there are patterns that should have been picked up on.

This is what he wrote on chain letters in the 2014 annual report:

In the late 1960s, I attended a meeting at which an acquisitive CEO bragged of his “bold, imaginative accounting.” Most of the analysts listening responded with approving nods, seeing themselves as having found a manager whose forecasts were certain to be met, whatever the business results might be. Eventually, however, the clock struck twelve, and everything turned to pumpkins and mice. Once again, it became evident that business models based on the serial issuances of overpriced shares – just like chain-letter models – most assuredly redistribute wealth, but in no way create it. Both phenomena, nevertheless, periodically blossom in our country – they are every promoter’s dream – though often they appear in a carefully-crafted disguise. The ending is always the same: Money flows from the gullible to the fraudster. And with stocks, unlike chain letters, the sums hijacked can be staggering.

And of course, the more prepared we are or the more relevant concepts and “experiences” we have in our heads, the better we all will be at this. How do we get there? Reading, learning and practice so we know it “fluently.” There are no shortcuts. We have to work at it and apply it to the real world.

As a reminder to myself so I understand my limitation and “circle”, I keep a paragraph from Munger’s USC Gould School of Law Commencement Address handy so when I deal with certain issues, I don’t fool myself into believing I am Max Planck when I’m really the Chauffeur:

In this world I think we have two kinds of knowledge: One is Planck knowledge, that of the people who really know. They’ve paid the dues, they have the aptitude. Then we’ve got chauffeur knowledge. They have learned to prattle the talk. They may have a big head of hair. They often have fine timbre in their voices. They make a big impression. But in the end what they’ve got is chauffeur knowledge masquerading as real knowledge.

Which concepts from Buffett/Munger/Mental Models do you find most counterintuitive?

One trick or notion I see many of us struggling with because it goes against our intuition is the concept of inversion – to learn to think “in negatives” which goes against our normal tendency to concentrate on for example, what we want to achieve or confirmations instead of what we want to avoid and disconfirmations. Another example of this is the importance of missing confirming evidence (I call it the “Sherlock trick”) – that negative evidence and events that don’t happen, matter when something implies they should be present or happen.

Another example that is counterintuitive is Newton’s 3d law that forces work in pairs. One object exerts a force on a second object, but the second object also exerts a force equal and opposite in direction to the force acting on it – the first object. As Newton wrote, “If you press a stone with your finger, the finger is also pressed by the stone.” Same as revenge (reciprocation).

Who are some of the non-obvious, or under-the-radar thinkers that you greatly admire?

One that immediately comes to mind is one I have mentioned in the introduction in two of my books is someone I am fortunate to have as a friend – Peter Kaufman. An outstanding thinker and a great businessman and human being. On a scale of 1 to 10, he is a 15.

What have you come to appreciate more with Buffett/Munger’s lessons as you’ve studied them over the years?

Their ethics and their ethos of clarity, simplicity and common sense. These two gentlemen are outstanding in their instant ability to exclude bad ideas, what doesn’t work, bad people, scenarios that don’t matter, etc. so they can focus on what matters. Also my amazement that their ethics and ideas haven’t been more replicated. But I assume the answer lies in what Munger once said, “The reason our ideas haven’t spread faster is they’re too simple.”

This reminds me something my father-in-law once told me (a man I learnt a lot from) – the curse of knowledge and the curse of academic title. My now deceased father-in-law was an inventor and manager. He did not have any formal education but was largely self-taught. Once a big corporation asked for his services to solve a problem their 60 highly educated engineers could not solve. He solved the problem. The engineers said, “It can’t be that simple.” It was like they were saying that, “Here we have 6 years of school, an academic title, lots of follow up education. Therefore an engineering problem must be complicated”. Like Buffett once said of Ben Graham’s ideas, “I think that it comes down to those ideas – although they sound so simple and commonplace that it kind of seems like a waste to go to school and get a PhD in Economics and have it all come back to that. It’s a little like spending eight years in divinity school and having somebody tell you that the 10 commandments were all that counted. There is a certain natural tendency to overlook anything that simple and important.”

(I must admit that in the past I had a tendency to be extra drawn to elegant concepts and distracting me from the simple truths.)

What things have you come to understand more deeply in the past few years?

  • That I don’t need hundreds of concepts, methods or tricks in my head – there are a few basic, time-filtered fundamental ones that are good enough. As Munger says, “The more basic knowledge you have the less new knowledge you have to get.” And when I look at something “new”, I try to connect it to something I already understand and if possible get a wider application of an already existing basic concept that I already have in my head.
  • Neither do I have to learn everything to cover every single possibility – not only is it impossible but the big reason is well explained by the British statistician George Box. He said that we shouldn’t be preoccupied with optimal or best procedures but good enough over a range of possibilities likely to happen in practice – circumstances which the world really present to us.
  • The importance of “Picking my battles” and focus on the long-term consequences of my actions. As Munger said, “A majority of life’s errors are caused by forgetting what one is really trying to do.”
  • How quick most of us are in drawing conclusions. For example, I am often too quick in being judgmental and forget how I myself behaved or would have behaved if put in another person’s shoes (and the importance of seeing things from many views).
  • That I have to “pick my poison” since there is always a set of problems attached with any system or approach – it can’t be perfect. The key is try to move to a better set of problems one can accept after comparing what appear to be the consequences of each.
  • How efficient and simplified life is when you deal with people you can trust. This includes the importance of the right culture.
  • The extreme importance of the right CEO – a good operator, business person and investor.
  • That luck plays a big role in life.
  • That most predictions are wrong and that prevention, robustness and adaptability is way more important. I can’t help myself – I have to add one thing about the people who give out predictions on all kinds of things. Often these are the people who live in a world where their actions have no consequences and where their ideas and theories don’t have to agree with reality.
  • That people or businesses that are foolish in one setting often are foolish in another one (“The way you do anything, is the way you do everything”).
  • Buffett’s advice that “A checklist is no substitute for thinking.” And that sometimes it is easy to overestimate one’s competency in a) identifying or picking what the dominant or key factors are and b) evaluating them including their predictability. That I believe I need to know factor A when I really need to know B – the critical knowledge that counts in the situation with regards to what I want to achieve.
  • Close to this is that I sometimes get too involved in details and can’t see the forest for the trees and I get sent up too many blind alleys. Just as in medicine where a whole body scan sees too much and sends the doctor up blind alleys.
  • The wisdom in Buffett’s advice that “You only have to be right on a very, very few things in your lifetime as long as you never make any big mistakes…An investor needs to do very few things right as long as he or she avoids big mistakes.”

What’s the best investment of time/effort/money that you’ve ever made?

The best thing I have done is marrying my wife. As Buffett says and it is so so true, “Choosing a spouse is the most important decision in your life…You need everything to be stable, and if that decision isn’t good, it may affect every other decision in life, including your business decisions…If you are lucky on health and…on your spouse, you are a long way home.”

A good “investment” is taking the time to continuously improve. It just takes curiosity and a desire to know and understand – real interest. And for me this is fun.

What does your typical day look like? (How much time do you spend reading… and when?)

Every day is a little different but I read every day.

What book has most impacted your life?

There is not one single book or one single idea that has done it. I have picked up things from different books (still do). And there are different books and articles that made a difference during different periods of my life. Meeting and learning from certain people and my own practical experiences has been more important in my development. As an example – When I was in my 30s a good friend told me something that has been very useful in looking at products and businesses. He said I should always ask who the real customer is: “Who ultimately decides what to buy and what are their decision criteria and how are they measured and rewarded and who pays?

But looking back, if I have had a book like Poor Charlie’s Almanack when I was younger I would have saved myself some misery. And of course, when it comes to business, managing and investing, nothing beats learning from Warren Buffett’s Letters to Berkshire Hathaway Shareholders.

Another thing I have found is that it is way better to read and reread fewer books but good and timeless ones and then think. Unfortunately many people absorb too many new books and information without thinking.

Let me finish this with some quotes from my new book that I believe we all can learn from:

  • “There’s no magic to it…We haven’t succeeded because we have some great, complicated systems or magic formulas we apply or anything of the sort. What we have is just simplicity itself.” – Buffett
  • “Our ideas are so simple that people keep asking us for mysteries when all we have are the most elementary ideas…There’s nothing remarkable about it. I don’t have any wonderful insights that other people don’t have. Just slightly more consistently than others, I’ve avoided idiocy…It is remarkable how much long-term advantage people like us have gotten by trying to be consistently not stupid, instead of trying to be very intelligent.” – Munger
  • “It really is simple – just avoid doing the dumb things. Avoiding the dumb things is the most important.” – Buffett

Finally, I wish you and your readers an excellent day – Everyday!

 

The Island of Knowledge: Science and the Meaning of Life

“As the Island of Knowledge grows, so do the shores of our ignorance—the boundary between the known and unknown. Learning more about the world doesn’t lead to a point closer to a final destination—whose existence is nothing but a hopeful assumption anyways—but to more questions and mysteries. The more we know, the more exposed we are to our ignorance, and the more we know to ask.”

***

Common across human history is our longing to better understand the world we live in, and how it works. But how much can we actually know about the world?

In his book, The Island of Knowledge: The Limits of Science and the Search for Meaning, Physicist Marcelo Gleiser traces our progress of modern science in the pursuit to the most fundamental questions on existence, the origin of the universe, and the limits of knowledge.

What we know of the world is limited by what we can see and what we can describe, but our tools have evolved over the years to reveal ever more pleats into our fabric of knowledge. Gleiser celebrates this persistent struggle to understand our place in the world and travels our history from ancient knowledge to our current understanding.

While science is not the only way to see and describe the world we live in, it is a response to the questions on who we are, where we are, and how we got here. “Science speaks directly to our humanity, to our quest for light, ever more light.

To move forward, science needs to fail, which runs counter to our human desire for certainty. “We are surrounded by horizons, by incompleteness.” Rather than give up, we struggle along a scale of progress. What makes us human is this journey to understand more about the mysteries of the world and explain them with reason. This is the core of our nature.

While the pursuit is never ending, the curious journey offers insight not just into the natural world, but insight into ourselves.

“What I see in Nature is a magnificent structure that we can comprehend only
very imperfectly,
and that must fill a thinking person with a feeling of humility.”
— Albert Einstein

We tend to think that what we see is all there is — that there is nothing we cannot see. We know it isn’t true when we stop and think, yet we still get lulled into a trap of omniscience.

Science is thus limited, offering only part of the story — the part we can see and measure. The other part remains beyond our immediate reach.

What we see of the world,” Gleiser begins, “is only a sliver of what’s out there.”

There is much that is invisible to the eye, even when we augment our sensorial perception with telescopes, microscopes, and other tools of exploration. Like our senses, every instrument has a range. Because much of Nature remains hidden from us, our view of the world is based only on the fraction of reality that we can measure and analyze. Science, as our narrative describing what we see and what we conjecture exists in the natural world, is thus necessarily limited, telling only part of the story. … We strive toward knowledge, always more knowledge, but must understand that we are, and will remain, surrounded by mystery. This view is neither antiscientific nor defeatist. … Quite the contrary, it is the flirting with this mystery, the urge to go beyond the boundaries of the known, that feeds our creative impulse, that makes us want to know more.

While we may broadly understand the map of what we call reality, we fail to understand its terrain. Reality, Gleiser argues, “is an ever-shifting mosaic of ideas.”

However…

The incompleteness of knowledge and the limits of our scientific worldview only add to the richness of our search for meaning, as they align science with our human fallibility and aspirations.

What we call reality is a (necessarily) limited synthesis. It is certainly our reality, as it must be, but it is not the entire reality itself:

My perception of the world around me, as cognitive neuroscience teaches us, is synthesized within different regions of my brain. What I call reality results from the integrated sum of countless stimuli collected through my five senses, brought from the outside into my head via my nervous system. Cognition, the awareness of being here now, is a fabrication of a vast set of chemicals flowing through myriad synaptic connections between my neurons. … We have little understanding as to how exactly this neuronal choreography engenders us with a sense of being. We go on with our everyday activities convinced that we can separate ourselves from our surroundings and construct an objective view of reality.

The brain is a great filtering tool, deaf and blind to vast amounts of information around us that offer no evolutionary advantage. Part of it we can see and simply ignore. Other parts, like dust particles and bacteria, go unseen because of limitations of our sensory tools.

As the Fox said to the Little Prince in Antoine de Saint-Exupery’s fable, “What is essential is invisible to the eye.” There is no better example than oxygen.

Science has increased our view. Our measurement tools and instruments can see bacteria and radiation, subatomic particles and more. However precise these tools have become, their view is still limited.

There is no such thing as an exact measurement. Every measurement must be stated within its precision and quoted together with “error bars” estimating the magnitude of errors. High-precision measurements are simply measurements with small error bars or high confidence levels; there are no perfect, zero-error measurements.

[…]

Technology limits how deeply experiments can probe into physical reality. That is to say, machines determine what we can measure and thus what scientists can learn about the Universe and ourselves. Being human inventions, machines depend on our creativity and available resources. When successful, they measure with ever-higher accuracy and on occasion may also reveal the unexpected.

“All models are wrong, some are useful.”
— George Box

What we know about the world is only what we can detect and measure — even if we improve our “detecting and measuring” as time goes along. And thus we make our conclusions of reality on what we can currently “see.”

We see much more than Galileo, but we can’t see it all. And this restriction is not limited to measurements: speculative theories and models that extrapolate into unknown realms of physical reality must also rely on current knowledge. When there is no data to guide intuition, scientists impose a “compatibility” criterion: any new theory attempting to extrapolate beyond tested ground should, in the proper limit, reproduce current knowledge.

[…]

If large portions of the world remain unseen or inaccessible to us, we must consider the meaning of the word “reality” with great care. We must consider whether there is such a thing as an “ultimate reality” out there — the final substrate of all there is — and, if so, whether we can ever hope to grasp it in its totality.

[…]

We thus must ask whether grasping reality’s most fundamental nature is just a matter of pushing the limits of science or whether we are being quite naive about what science can and can’t do.

Here is another way of thinking about this: if someone perceives the world through her senses only (as most people do), and another amplifies her perception through the use of instrumentation, who can legitimately claim to have a truer sense of reality? One “sees” microscopic bacteria, faraway galaxies, and subatomic particles, while the other is completely blind to such entities. Clearly they “see” different things and—if they take what they see literally—will conclude that the world, or at least the nature of physical reality, is very different.

Asking who is right misses the point, although surely the person using tools can see further into the nature of things. Indeed, to see more clearly what makes up the world and, in the process to make more sense of it and ourselves is the main motivation to push the boundaries of knowledge. … What we call “real” is contingent on how deeply we are able to probe reality. Even if there is such thing as the true or ultimate nature of reality, all we have is what we can know of it.

[…]

Our perception of what is real evolves with the instruments we use to probe Nature. Gradually, some of what was unknown becomes known. For this reason, what we call “reality” is always changing. … The version of reality we might call “true” at one time will not remain true at another. … Given that our instruments will always evolve, tomorrow’s reality will necessarily include entitles not known to exist today. … More to the point, as long as technology advances—and there is no reason to suppose that it will ever stop advancing for as long as we are around—we cannot foresee an end to this quest. The ultimate truth is elusive, a phantom.

Gleiser makes his point with a beautiful metaphor. The Island of Knowledge.

Consider, then, the sum total of our accumulated knowledge as constituting an island, which I call the “Island of Knowledge.” … A vast ocean surrounds the Island of Knowledge, the unexplored ocean of the unknown, hiding countless tantalizing mysteries.

The Island of Knowledge grows as we learn more about the world and ourselves. And as the island grows, so too “do the shores of our ignorance—the boundary between the known and unknown.”

Learning more about the world doesn’t lead to a point closer to a final destination—whose existence is nothing but a hopeful assumption anyways—but to more questions and mysteries. The more we know, the more exposed we are to our ignorance, and the more we know to ask.

As we move forward we must remember that despite our quest, the shores of our ignorance grow as the Island of Knowledge grows. And while we will struggle with the fact that not all questions will have answers, we will continue to progress. “It is also good to remember,” Gleiser writes, “that science only covers part of the Island.”

Richard Feynman has pointed out before that science can only answer the subset of question that go, roughly, “If I do this, what will happen?” Answers to questions like Why do the rules operate that way? and Should I do it? are not really questions of scientific nature — they are moral, human questions, if they are knowable at all.

There are many ways of understanding and knowing that should, ideally, feed each other. “We are,” Gleiser concludes, “multidimensional creatures and search for answers in many, complementary ways. Each serves a purpose and we need them all.”

“The quest must go on. The quest is what makes us matter: to search for more answers, knowing that the significant ones will often generate surprising new questions.”

The Island of Knowledge is a wide-ranging tour through scientific history from planetary motions to modern scientific theories and how they affect our ideas on what is knowable.

“As the Island of Knowledge grows, so do the shores of our ignorance.” Click To Tweet

The Need for Biological Thinking to Solve Complex Problems

“Biological thinking and physics thinking are distinct, and often complementary, approaches to the world, and ones that are appropriate for different kinds of systems.”

***

How should we think about complexity? Should we use a biological or physics system? The answer, of course, is that it depends. It’s important to have both tools available at your disposal.

These are the questions that Samuel Arbesman explores in his fascinating book Overcomplicated: Technology at the Limits of Comprehension.

[B]iological systems are generally more complicated than those in physics. In physics, the components are often identical—think of a system of nothing but gas particles, for example, or a single monolithic material, like a diamond. Beyond that, the types of interactions can often be uniform throughout an entire system, such as satellites orbiting a planet.

Biology is different and there is something meaningful to be learned from a biological approach to thinking.

In biology, there are a huge number of types of components, such as the diversity of proteins in a cell or the distinct types of tissues within a single creature; when studying, say, the mating behavior of blue whales, marine biologists may have to consider everything from their DNA to the temperature of the oceans. Not only is each component in a biological system distinctive, but it is also a lot harder to disentangle from the whole. For example, you can look at the nucleus of an amoeba and try to understand it on its own, but you generally need the rest of the organism to have a sense of how the nucleus fits into the operation of the amoeba, how it provides the core genetic information involved in the many functions of the entire cell.

Arbesman makes an interesting point here when it comes to how we should look at technology. As the interconnections and complexity of technology increases, it increasingly resembles a biological system rather than a physics one. There is another difference.

[B]iological systems are distinct from many physical systems in that they have a history. Living things evolve over time. While the objects of physics clearly do not emerge from thin air—astrophysicists even talk about the evolution of stars—biological systems are especially subject to evolutionary pressures; in fact, that is one of their defining features. The complicated structures of biology have the forms they do because of these complex historical paths, ones that have been affected by numerous factors over huge amounts of time. And often, because of the complex forms of living things, where any small change can create unexpected effects, the changes that have happened over time have been through tinkering: modifying a system in small ways to adapt to a new environment.

Biological systems are generally hacks that evolved to be good enough for a certain environment. They are far from pretty top-down designed systems. And to accommodate an ever-changing environment they are rarely the most optimal system on a mico-level, preferring to optimize for survival over any one particular attribute. And it’s not the survival of the individual that’s optimized, it’s the survival of the species.

Technologies can appear robust until they are confronted with some minor disturbance, causing a catastrophe. The same thing can happen to living things. For example, humans can adapt incredibly well to a large array of environments, but a tiny change in a person’s genome can cause dwarfism, and two copies of that mutation invariably cause death. We are of a different scale and material from a particle accelerator or a computer network, and yet these systems have profound similarities in their complexity and fragility.

Biological thinking, with a focus on details and diversity, is a necessary tool to deal with complexity.

The way biologists, particularly field biologists, study the massively complex diversity of organisms, taking into account their evolutionary trajectories, is therefore particularly appropriate for understanding our technologies. Field biologists often act as naturalists— collecting, recording, and cataloging what they find around them—but even more than that, when confronted with an enormously complex ecosystem, they don’t immediately try to understand it all in its totality. Instead, they recognize that they can study only a tiny part of such a system at a time, even if imperfectly. They’ll look at the interactions of a handful of species, for example, rather than examine the complete web of species within a single region. Field biologists are supremely aware of the assumptions they are making, and know they are looking at only a sliver of the complexity around them at any one moment.

[…]

When we’re dealing with different interacting levels of a system, seemingly minor details can rise to the top and become important to the system as a whole. We need “Field biologists” to catalog and study details and portions of our complex systems, including their failures and bugs. This kind of biological thinking not only leads to new insights, but might also be the primary way forward in a world of increasingly interconnected and incomprehensible technologies.

Waiting and observing isn’t enough.

Biologists will often be proactive, and inject the unexpected into a system to see how it reacts. For example, when biologists are trying to grow a specific type of bacteria, such as a variant that might produce a particular chemical, they will resort to a process known as mutagenesis. Mutagenesis is what it sounds like: actively trying to generate mutations, for example by irradiating the organisms or exposing them to toxic chemicals.

When systems are too complex for human understanding, often we need to insert randomness to discover the tolerances and limits of the system. One plus one doesn’t always equal two when you’re dealing with non-linear systems. For biologists, tinkering is the way to go.

One plus one doesn't always equal two when you're dealing with non-linear systems. Click To Tweet

As Stewart Brand noted about legacy systems, “Teasing a new function out of a legacy system is not done by command but by conducting a series of cautious experiments that with luck might converge toward the desired outcome.”

When Physics and Biology Meet

This doesn’t mean we should abandon the physics approach, searching for underlying regularities in complexity. The two systems complement one another rather than compete.

Arbesman recommends asking the following questions:

When attempting to understand a complex system, we must determine the proper resolution, or level of detail, at which to look at it. How fine-grained a level of detail are we focusing on? Do we focus on the individual enzyme molecules in a cell of a large organism, or do we focus on the organs and blood vessels? Do we focus on the binary signals winding their way through circuitry, or do we examine the overall shape and function of a computer program? At a larger scale, do we look at the general properties of a computer network, and ignore the individual machines and decisions that make up this structure?

When we need to abstract away a lot of the details we lean on physics thinking more. Think about it from an organizational perspective. The new employee at the lowest level is focused on the specific details of their job whereas the executive is focused on systems, strategy, culture, and flow — how things interact and reinforce one another. The details of the new employee’s job are lost on them.

We can’t use one system, whether biological or physics, exclusively. That’s a sure way to fragile thinking. Rather, we need to combine them.

In Cryptonomicon, a novel by Neal Stephenson, he makes exactly this point talking about the structure of the pantheon of Greek gods:

And yet there is something about the motley asymmetry of this pantheon that makes it more credible. Like the Periodic Table of the Elements or the family tree of the elementary particles, or just about any anatomical structure that you might pull up out of a cadaver, it has enough of a pattern to give our minds something to work on and yet an irregularity that indicates some kind of organic provenance—you have a sun god and a moon goddess, for example, which is all clean and symmetrical, and yet over here is Hera, who has no role whatsoever except to be a literal bitch goddess, and then there is Dionysus who isn’t even fully a god—he’s half human—but gets to be in the Pantheon anyway and sit on Olympus with the Gods, as if you went to the Supreme Court and found Bozo the Clown planted among the justices.

There is a balance and we need to find it.