Tag: Technology

Why the Printing Press and the Telegraph Were as Impactful as the Internet

What makes a communications technology revolutionary? One answer to this is to ask whether it fundamentally changes the way society is organized. This can be a very hard question to answer, because true fundamental changes alter society in such a way that it becomes difficult to speak of past society without imposing our present understanding.

In her seminal work, The Printing Press as An Agent of Change, Elizabeth Eisenstein argues just that:

When ideas are detached from the media used to transmit them, they are also cut off from the historical circumstances that shape them, and it becomes difficult to perceive the changing context within which they must be viewed.

Today we rightly think of the internet and the mobile phone, but long ago, the printing press and the telegraph both had just as heavy an impact on the development of society.

Printing Press

Thinking of the time before the telegraph, when communications had to be hand delivered, is quaint. Trying to conceive the world before the uniformity of communication brought about by the printing press is almost unimaginable.

Eisenstein argues that the printing press “is of special historical significance because it produced fundamental alterations in prevailing patterns of continuity and change.”

Before the printing press there were no books, not in the sense that we understand them. There were manuscripts that were copied by scribes, which contained inconsistencies and embellishments, and modifications that suited who the scribe was working for. The printing press halted the evolution of symbols: For the first time maps and numbers were fixed.

Furthermore, because pre-press scholars had to go to manuscripts, Eisenstein says we should “recognize the novelty of being able to assemble diverse records and reference guides, and of being able to study them without having to transcribe them at the same time” that was afforded by the printing press.

This led to new ways of being able to compare and thus develop knowledge, by reducing the friction of getting to the old knowledge:

More abundantly stocked bookshelves obviously increased opportunities to consult and compare different texts. Merely by making more scrambled data available, by increasing the output of Aristotelian, Alexandrian and Arabic texts, printers encouraged efforts to unscramble these data.

Eisenstein argues that many of the great thinkers of the 16th century, such as Descartes and Montaigne, would have been unlikely to have produced what they did without the changes wrought by the printing press. She says of Montaigne, “that he could see more books by spending a few months in his Bordeaux tower-study than earlier scholars had seen after a lifetime of travel.”

The printing press increased the speed of communication and the spread of knowledge: Far less man hours were needed to turn out 50 printed books than 50 scribed manuscripts.

Telegraph

Henry Ford famously said of life before the car “If I had asked people what they wanted, they would have said faster horses“. This sentiment could be equally applied to the telegraph, a communications technology that came about 400 years after the printing press.

Before the telegraph, the speed of communication was dependent on the speed of the physical object doing the transporting – the horse, or the ship. Societies were thus organized around the speed of communication available to them, from the way business was conducted and wars were fought to the way interpersonal communication was conducted.

Let's consider, for example, the way the telegraph changed the conduct of war.

Prior to the telegraph, countries shared detailed knowledge of their plans with their citizens in order to boost morale, knowing that their plans would arrive at the enemy the same time their ships did. Post-telegraph, communications could arrive far faster than soldiers: This was something to consider!

In addition, as Tom Standage considers in his book The Victorian Internet, the telegraph altered the command structure in battle. “For who was better placed to make strategic decisions: the commander at the scene or his distant superiors?”

The telegraph brought changes similar in many ways to the printing press: It allowed for an accumulation of knowledge and increased the availability of this knowledge; more people had access to more information.

And society was forever altered as the new speed of communication made it fundamentally impossible to not use the telegraph, just as it is near impossible not to use a mobile phone or the Internet today.

Once the telegraph was widespread, there was no longer a way to do business without using it. Having up to the minute stock quotes changed the way businesses evaluated their holdings. Being able to communicate with various offices across the country created centralization and middle management. These elements became part of doing business so that it became nonsensical to talk about developing any aspect of business independent of the effect of electronic communication.

A Final Thought on Technology Uptake

One can argue that the more revolutionary an invention is, the slower the initial uptake into society, as society must do a fair amount of reorganizing to integrate the invention.

Such was the case for both the telegraph and printing press, as they allowed for things that were never before possible. Not being possible, they were rarely considered. Being rarely considered, there wasn't a large populace pining for them to happen. So when new options presented themselves, no one was rushing to embrace them, because there was no general appreciation of their potential. This is, of course, a fundamental aspect of revolutionary technology. Everyone has to figure out how (and why) to use it.

In The Victorian Internet, Standage says of William Cooke and Samuel Morse, the British and American inventors, respectively, of the telegraph:

[They] had done the impossible and constructed working telegraphs. Surely the world would fall at their feet. Building the prototypes, however, turned out to be the easy part. Convincing people of their significance was far more of a challenge.

It took years for people to see advantages with the telegraph. Even after the first lines were built, and the accuracy and speed of the communications they could carry verified, Morse realized that “everybody still thought of the telegraph as a novelty, as nothing more than an amusing subject for a newspaper article, rather than the revolutionary new form of communication that he envisaged.”

The new technology might confer great benefits, but it took a lot of work building the infrastructure, both physical and mental, to take any advantage of them.

The printing press faced similar challenges. In fact, books printed from Gutenberg until 1501 have their own term, incunabula, which reflects the transition from manuscript to book. Eisenstein writes: “Printers and scribes copied each other’s products for several decades and duplicated the same texts for the same markets during the age of incunabula.”

The momentum took a while to build. When it did, the changes were remarkable.

But looking at these two technologies serves as a reminder of what revolutionary means in this context: The use by and value to society cannot be anticipated. Therefore, great and unpredictable shifts are caused when they are adopted and integrated into everyday life.

Memory and the Printing Press

You probably know that Gutenberg invented the printing press. You probably know it was pretty important. You may have heard some stuff about everyone being able to finally read the Bible without a priest handy. But here's a point you might not be familiar with: The printing press changed why, and consequently what, we remember.

Before the printing press, memory was the main store of human knowledge. Scholars had to go to find books, often traveling around from one scriptoria to another. They couldn’t buy books. Individuals did not have libraries. The ability to remember was integral to the social accumulation of knowledge.

Thus, for centuries humans had built ways to remember out of pure necessity. Because knowledge wasn’t fixed, remembering content was the only way to access it. Things had to be known in a deep, accessible way as Elizabeth Eisenstein argues in The Printing Press as an Agent of Change:

As learning by reading took on new importance, the role played by mnemonic aids was diminished. Rhyme and cadence were no longer required to preserve certain formulas and recipes. The nature of the collective memory was transformed.

In the Church, for example, Eisenstein talks of a multimedia approach to remembering the bible. As a manuscript, it was not widely available, not even to many church representatives; the stories of the bible were often pictorially represented in the churches themselves. Use of images, both physically and mentally, was critical to storing knowledge in memory: they were used as a tool to allow one to create extensive “memory palaces” enabling the retention of knowledge.

Not only did printing eliminate many functions previously performed by stone figures over portals and stained glass in windows, but it also affected less tangible images by eliminating the need for placing figures and objects in imaginary niches located in memory theatres.

Thus, in an age before the printing press, bits of knowledge were associated with other bits of knowledge not because they complemented each other, or allowed for insights, but merely so they could be retained.

…the heavy reliance on memory training and speech arts, combined with the absence of uniform conventions for dating and placing [meant that] classical images were more likely to be placed in niches in ‘memory theatres’ than to be assigned a permanent location in a fixed past.

In our post on memory palaces, we used the analogy of a cow and a steak. To continue with the analogy used there, imagining that your partner asks you to pick up steak for dinner. To increase your chances of remembering the request, you envision a cow sitting on the front porch. When you mind-walk through your palace, you see this giant cow sitting there, perhaps waving at you (so unlike a cow!), causing you to think, ‘Why is that cow there–oh yeah, pick up steak for dinner’.

Before the printing press, it wasn’t just about picking up dinner. It was all of our knowledge. Euclid's Elements and Aristotle's Politics. The works of St. Augustine and Seneca. These works were shared most often orally, passing from memory to memory. Thus memory was not as much about remembering in the ages of scribes, as it was about preserving.

Consequently, knowledge was far less shared, and then only to those who could understand it and recall it.

To be preserved intact, techniques had to be entrusted to a select group of initiates who were instructed not only in special skills but also in the ‘mysteries’ associated with them. Special symbols, rituals, and incantations performed the necessary function of organizing data, laying out schedules, and preserving techniques in easily memorized forms.

Anyone who's played the game “Telephone” knows the problem: As knowledge is passed on, over and over, it gets transformed, sometimes distorted. This needed to be guarded against, and sometimes couldn't be. As there was no accessible reference library for knowledge, older texts were prized because they were closer to the originals.

Not only could more be learned from retrieving an early manuscript than from procuring a recent copy but the finding of lost texts was the chief means of achieving a breakthrough in almost any field.

Almost incomprehensible today, “Energies were expended on the retrieval of ancient texts because they held the promise of finding so much that still seemed new and untried.” Only by finding older texts could scholars hope to discover the original, unaltered sources of knowledge.

With the advent of the printing press, images and words became something else. Because they were now repeatable, they became fixed. No longer individual interpretations designed for memory access, they became part of the collective.

The effects of this were significant.

Difficulties engendered by diverse Greek and Arabic expressions, by medieval Latin abbreviations, by confusion between Roman letters and numbers, by neologisms, copyists’ errors and the like were so successfully overcome that modern scholars are frequently absent-minded about the limitations on progress in the mathematical sciences which scribal procedures imposed. … By the seventeenth century, Nature’s language was being emancipated from the old confusion of tongues. Diverse names for flora and fauna became less confusing when placed beneath identical pictures. Constellations and landmasses could be located without recourse to uncertain etymologies, once placed on uniform maps and globes. … The development of neutral pictorial and mathematical vocabularies made possible a large-scale pooling of talents for analyzing data, and led to the eventual achievement of a consensus that cut across all the old frontiers.

A key component of this was that apprentices and new scholars could consult books and didn’t have to exclusively rely on the memories of their superiors.

An updated technical literature enabled young men in certain fields of study to circumvent master-disciple relationships and to surpass their elders at the same time. Isaac Newton was still in his twenties when he mastered available mathematical treatises, beginning with Euclid and ending with an updated edition of Descartes. In climbing ‘on the shoulders of giants’ he was not re-enacting the experience of twelfth-century scholars for whom the retrieval of Euclid’s theorems had been a major feat.

Before the printing press, a scholar could spend his lifetime looking for a copy of Euclid’s Elements and never find them, thus having to rely on how the text was encoded in the memories of the scholars he encountered.

After the printing press, memory became less critical to knowledge. And knowledge became more widely dispersed as the reliance on memory being required for interpretation and understanding diminished. And with that, the collective power of the human mind was multiplied.

If you liked this post, check out our series on memory, starting with the advantages of our faulty memory, and continuing to the first part on our memory's frequent errors.

A Short List of Books for Doing New Things

Andrew Ng has quite the modern resume.

He founded Coursera, a wonderful website that gives anyone with Internet access the ability to take high level university courses on almost any topic. He founded the Google Brain project at Google, their deep learning research project intended to help bring about better artificial intelligence. Now he's the Chief Scientist at Baidu Research.

Ng is, unsurprisingly, devoted to reading and learning. As he puts it,

In my own life, I found that whenever I wasn't sure what to do next, I would go and learn a lot, read a lot, talk to experts. I don't know how the human brain works but it's almost magical: when you read enough or talk to enough experts, when you have enough inputs, new ideas start appearing. This seems to happen for a lot of people that I know.

When you become sufficiently expert in the state of the art, you stop picking ideas at random. You are thoughtful in how to select ideas, and how to combine ideas. You are thoughtful about when you should be generating many ideas versus pruning down ideas.

[…]

I read a lot and I also spend time talking to people a fair amount. I think two of the most efficient ways to learn, to get information, are reading and talking to experts. So I spend quite a bit of time doing both of them. I think I have just shy of a thousand books on my Kindle. And I've probably read about two-thirds of them.

Ng thinks innovation and creativity can be learned — that they are pattern-recognition and combinatorial creativity exercises which can be performed by an intelligent and devoted practitioner with the right approach.

He also encourages the creation of new things; new businesses, new technologies. And on that topic, Ng has a few book recommendations. Given his list of accomplishments, the quality of his mind, and his admitted devotion to reading the printed word, it seems worth our time to check out the list.

***

Zero to One

The first is “Zero to One” by Peter Thiel, a very good book that gives an overview of entrepreneurship and innovation.

Crossing the Chasm / The Lean Startup

We often break down entrepreneurship into B2B (“business to business,” i.e., businesses whose customers are other businesses) and B2C (“business to consumer”).

For B2B, I recommend “Crossing the Chasm.” For B2C, one of my favorite books is “The Lean Startup,” which takes a narrower view but it gives one specific tactic for innovating quickly. It's a little narrow but it's very good in the area that it covers.

Talking to Humans

Then to break B2C down even further, two of my favorites are “Talking to Humans,” which is a very short book that teaches you how to develop empathy for users you want to serve by talking to them.

Rocket Surgery Made Easy

Also, “Rocket Surgery Made Easy.” If you want to build products that are important, that users care about, this teaches you different tactics for learning about users, either through user studies or by interviews.

The Hard Thing about Hard Things

Then finally there is “The Hard Thing about Hard Things.” It's a bit dark but it does cover a lot of useful territory on what building an organization is like.

So Good They Can't Ignore You

For people who are trying to figure out career decisions, there's a very interesting one: “So Good They Can't Ignore You.” That gives a valuable perspective on how to select a path for one's career.

Paul Graham on Free Speech, Suburbia, Getting Rich, and Nerds

“I think a society in which people can do and say what they want will also tend to be one in which the most efficient solutions win.”

***

Paul Graham is a programmer, writer, and investor. His 2004 anthology Hackers and Painters explores not only topics like where good ideas come from but also touches on social and cultural issues such as free speech, getting rich, and geek culture. Here are a few interesting tidbits worth pondering.

***
Free Speech

I wonder how Graham thinks about this in the context of organizations. Ideas are the lifeblood of organizations but it seems to me that in certain workplaces “free speech” is not so free. The best ideas fall to politics, consensus, and pettiness. Suffering from such intellectual corruption dysfunctional behaviour results, which causes an ultimately self-correcting spiral into bankruptcy.

I think a society in which people can do and say what they want will also tend to be one in which the most efficient solutions win, rather than those sponsored by the most influential people. Authoritarian countries become corrupt; corrupt countries become poor; and poor countries are weak.

***
Getting Rich

Graham illuminates how the industrial revolution changed the incentives from corruption to wealth creation as the primary vehicle to getting rich.

Once it became possible to get rich by creating wealth, society as a whole started to get richer very rapidly. Nearly everything we have was created by the middle class. Indeed, the other two classes have effectively disappeared in industrial societies, and their names been given to either end of the middle class. (In the original sense of the word, Bill Gates is middle class.)

But it was not till the Industrial Revolution that wealth creation definitively replaced corruption as the best way to get rich. In England, at least, corruption only became unfashionable (and in fact only started to be called “corruption”) when there started to be other, faster ways to get rich.

***
Nerds

Highlighting the difference between the popular kids and nerds, Graham writes:

While the nerds were being trained to get the right answers, the popular kids were being trained to please.

***
Suburbia

In exploring suburbia, Graham looks at how the environment encourages helicopter parenting.

Why do people move to suburbia? To have kids! So no wonder it seemed boring and sterile. The whole place was a giant nursery, an artificial town created explicitly for the purpose of breeding children.

Where I grew up, it felt as if there was nowhere to go, and nothing to do. This was no accident. Suburbs are deliberately designed to exclude the outside world, because it contains things that could endanger children.

***
Still Curious?

All of the essays in Hackers & Painters: Big Ideas from the Computer Age are worth reading and thinking about.

Garrett Hardin: The Other Side of Expertise


From Garrett Hardin's mind-blowingly awesome Filters Against Folly.

In our highly technological society we cannot do without experts. We accept this fact of life, but not without anxiety. There is much truth in the definition of the specialist as someone who “knows more and more about less and less.” But there is another side to the coin of expertise. A really great idea in science often has its birth as apparently no more than a particular answer to a narrow question; it is only later that it turns out that the ramifications of the answer reach out into the most surprising corners. What begins as knowledge about very little turns out to be wisdom about a great deal.

So it was with the development of the theory of probability. It all began in the seventeenth century, when one of the minor French nobility asked the philosopher-scientist Blaise Pascal to devise a fair way to divide the stakes in an interrupted gambling game. Pascal consulted with lawyer-mathematician friend Pierre de Fermat, and the two of them quickly laid the foundation of probability theory. Out of a trivial question about gambling came profound insights that later bore splendid fruit in physics and biology, in the verification of the causes of disease, the calculation of fair insurance premiums, and the achievement of quality control in manufacturing processes. And much more.

The service of experts is indispensable even if we are poor at ascertaining under which circumstances they add value, when they add noise, and when they are harmful. Hardin cautions that each new expertise introduces “new possibilities of error.”

It is unfortunately true that experts are generally better at seeing their particular kinds of trees than the forest of all life.

Thoughtful laymen — that's us — can, however, “become very good at seeing the forest, particularly if they lose their timidity about challenging the experts. … In the universal role of laymen we all have to learn to filter the essential meaning out of the too verbose, too aggressively technical statements of the experts. Fortunately this is not as difficult a task as some experts would have us believe.”

Filters Against Folly is Hardin's attempt “to show there …. (are) some rather simple methods of checking on the validity of the statements of experts.”

Marshall McLuhan: The Here And Now

mcluhan-5301

“In a culture like ours, long accustomed to splitting and dividing all things as a means of control, it is sometimes a bit of a shock to be reminded that, in operational and practical fact, the medium is the message.”

***

In this passage from Understanding Media, Marshall McLuhan, reminds us of the difficulty that frictionless connection brings with it and how technological media advances have worked not to preserve but rather to ‘abolish history.'

Perfection of the means of communication has meant instantaneity. Such an instantaneous network of communication is the body-mind unity of each of us. When a city or a society achieves a diversity and equilibrium of awareness analogous to the body-mind network, it has what we tend to regard as a high culture.

But the instantaneity of communication makes free speech and thought difficult if not impossible, and for many reasons. Radio extends the range of the casual speaking voice, but it forbids that many should speak. And when what is said has such range of control, it is forbidden to speak any but the most acceptable words and notions. Power and control are in all cases paid for by loss of freedom and flexibility.

Today the entire globe has a unity in point of mutual interawareness, which exceeds in rapidity the former flow of information in a small city—say Elizabethan London with its eighty or ninety thousand inhabitants. What happens to existing societies when they are brought into such intimate contact by press, picture stories, newsreels, and jet propulsion? What happens when the Neolithic Eskimo is compelled to share the time and space arrangements of technological man? What happens in our minds as we become familiar with the diversity of human cultures which have come into existence under innumerable circumstances, historical and geographical? Is what happens comparable to that social revolution which we call the American melting pot?

When the telegraph made possible a daily cross section of the globe transferred to the page of newsprint, we already had our mental melting pot for cosmic man—the world citizen.The mere format of the page of newsprint was more revolutionary in its intellectual and emotional consequences than anything that could be said about any part of the globe.

When we juxtapose news items from Tokyo, London, New York, Chile, Africa, and New Zealand, we are not just manipulating space. The events so brought together belong to cultures widely separated in time. The modern world abridges all historical times as readily as it reduces space. Everywhere and every age have become here and now. History has been abolished by our new media.